Second order kinetic Kohn-Sham lattice model

S.Solórzano,1,* M. Mendoza,1,‡ and H. J. Herrmann1,†

1 ETH Zürich, Computational Physics for Engineering Materials, Institute for Building Materials, Wolfgang-Pauli-Str. 27, HIT, CH-8093 Zürich (Switzerland)

In this work we introduce a new semi-implicit second order correction scheme to the kinetic Kohn-Sham lattice model. The new approach is validated by performing realistic exchange-correlation energy calculations of atoms and dimers of the first two rows of the periodic table finding good agreement with the expected values. Additionally we simulate the ethane molecule where we recover the bond lengths and compare the results with standard methods. Finally, we discuss the current applicability of pseudopotentials within the lattice kinetic Kohn-Sham approach.

Central to many theoretical and practical problems in molecular and condensed matter physics, quantum chemistry, and material science is the solution of the Schrödinger equation for systems of electrons in molecules and crystals. It is well known that this problem scales exponentially [1] in the number of electrons and is in general a non-trivial task. This has led to the development of a number of approximate solution methods with different degrees of success in different scenarios: density matrix renormalisation group (DMRG) methods[2] for 1D model systems, Hartree Fock[3, 4], quantum Monte Carlo[5], exact diagonalization, and Kohn-Sham density functional theory (DFT)[6, 7].

The DFT formalism has proven to be one of the most versatile methods for ground state electronic calculations in spite of its known shortcomings[8]. This is due to the fact that it is formally exact, and that it allows to calculate several physical quantities such as bond lengths, bonding energies, ionization energies, etc. More specifically, within the Kohn-Sham DFT theory the many-electron Schrödinger equation is mapped to an auxiliary problem of non-interacting electrons subject to an external potential $V_{xc}[\rho]$ that depends on the electron density ρ. $V_{xc}[\rho]$ can be obtained from a universal, albeit, unknown energy functional of the electronic density, and in practice several highly accurate approximations have been proposed over the years.

Recently [9] it was shown that the Kohn-Sham equations that describe a system of electrons, can be recovered from an underlaying kinetic model described by the Boltzmann equation. This connection opens the door to the possibility of including exchange and correlation corrections into electronic calculations based on a kinetic perspective. Furthermore, it also allows the use of efficient Lattice Boltzmann (LB) methods[10] to solve the Kohn-Sham equations. LB methods, are well known numerical tools in the area of computational fluid dynamics. In recent years, however, their use has been extended beyond fluids to fields such as quantum mechanics[11], relativistic hydrodynamics[12] and classical electrodynamics[13] among others. The success of the LB method in these different fields is due to its high flexibility and computational efficiency that stems from the local character of the LB equations.

Here we present a new semi-implicit second order correction scheme to the lattice kinetic Kohn-Sham approach. The scheme avoids both the computational load of solving systems of equations with implicit methods and the instabilities associated to explicit corrections. This is achieved by using the formally known time evolution of a general state in imaginary time. The scheme is validated by performing calculations of the exchange and correlation energies of small atoms, as well as bond length calculations of H_2, LiH and C_2H_6 molecules. We also report on how pseudopotentials couple to our scheme, as well as the effects of using different lattices.

This work is organized as follows: section I revises the kinetic formulation of the Kohn-Sham equations, then in section II the lattice kinetic model is explained, and the semi-implicit second order correction to the forcing term is presented. Afterwards in section III the proposed model is studied and validated using, as a benchmark, calculations of exchange-correlation energies of different atoms and bond lengths of simple dimers. Results regarding the use of pseudopotentials and some comments on the choice of different lattices are also presented. Finally, in section IV the conclusions and future work are discussed.

I. KINETIC APPROACH TO DFT

The kinetic approach to density functional theory is based on the observation that the time dependent Kohn-Sham equations in imaginary time can be recovered as a special macroscopic limit of the Boltzmann equation in the BGK approximation [14], i.e.,

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f = -\frac{1}{\tau_k} (f - f^{eq}) + S, \quad (1)$$

where τ_k is the kinetic relaxation time, $f(\mathbf{x}, \mathbf{v}, t)$ is a distribution function in phase space, $f^{eq}(\mathbf{x}, \mathbf{v}, t)$ is the equilibrium distribution of the considered system and $S(\mathbf{x}, \mathbf{v}, t)$ is a general source term. Let the $\alpha_1 \alpha_2 ... \alpha_n$
component of the n-th moment of the distribution function, equilibrium distribution function, and source term be respectively defined as
\begin{align}
\Pi_{\alpha_1 \alpha_2 \ldots \alpha_n}^{(n)} &= \int \mathrm{d}v \, v_{\alpha_1} v_{\alpha_2} \ldots v_{\alpha_n} f(x, v, t), \\
\Pi_{\alpha_1 \alpha_2 \ldots \alpha_n}^{(n)\text{eq}} &= \int \mathrm{d}v \, v_{\alpha_1} v_{\alpha_2} \ldots v_{\alpha_n} f_\text{eq}(x, v, t), \\
\Sigma_{\alpha_1 \alpha_2 \ldots \alpha_n}^{(n)} &= \int \mathrm{d}v \, v_{\alpha_1} v_{\alpha_2} \ldots v_{\alpha_n} S(x, v, t),
\end{align}
where v_{α} is the α component of the phase space velocity vector v. If the moments of the equilibrium distribution function and source term are chosen as
\begin{align}
\Pi^{(0)\text{eq}} &= \Pi^{(0)}, \\
\Pi^{(1)\text{eq}} &= 0, \\
\Pi^{(2)\text{eq}} &= \tau_k C_s^2 \Pi^{(0)}, \\
\Pi^{(n)\text{eq}} &= 0 \text{ for } n > 2, \\
\Sigma^0 &= \tilde{S}, \\
\Sigma^{(n)\text{eq}} &= 0 \text{ for } n > 0,
\end{align}
where C_s^2 is a characteristic speed of the system and \tilde{S} is a known function of space and time, then it can be shown that the 0-th moment of the distribution function evolves in time according to the diffusion equation
\begin{equation}
\frac{\partial \Pi^0}{\partial t} = \tau_k C_s^2 \nabla^2 \Pi^0 + \tilde{S}. \tag{4}
\end{equation}
If the identifications $\Pi^0 \equiv \psi$, $\tau_k C_s^2 \equiv \frac{\hbar}{2m}$ and $\tilde{S} \equiv -V \psi$ are made, then Eq.(4) can be rewritten as
\begin{equation}
\frac{\partial \psi}{\partial t} = \frac{\hbar}{2m} \nabla^2 \psi - \frac{V}{\hbar} \psi, \tag{5}
\end{equation}
which is the Wick rotated time dependent Kohn-Sham equation provided that $V = V_{\text{ion}} + V_{\text{cc}} + V_{\text{xc}}$ is the total potential felt by the electrons, where V_{ion} is the external Coulomb ion potential, V_{cc} the electron-electron interaction and V_{xc} the exchange-correlation potential. Notice that Eq.(3) contains all the ground state information of the considered system.

In principle, for any initial condition $\psi^{(0)}$ of $\Pi^{(0)}$, that has a non vanishing projection on the ground state ϕ_0, the imaginary time evolution guarantees that as the time increases and the wave function is renormalized, only the ϕ_0 contribution is obtained.

Assuming that ϕ_0 is known, ϕ_1 can be retrieved by changing the initial condition to $\psi^{(0)} - \langle \phi_0 | \psi^{(0)} \rangle \phi_0$. Higher states can similarly be obtained by sequentially removing the lower ones from the initial condition. This serial form of proceeding can be cast in a parallel version that naturally fits the kinetic approach at the expense of solving various kinetic equations.

Consider a system for which N Kohn-Sham orbitals $\phi_l \ l = 1, 2, \ldots, N$ are required, each one of them being associated to an extended kinetic model
\begin{equation}
\frac{\partial f_l}{\partial t} + v \cdot \nabla f_l = -\frac{1}{\tau_k} (f_l - f_l^{\text{eq}}) + S + \frac{1}{\tau_k} W_l, \tag{6}
\end{equation}
where W_l is an orthonormalization potential defined by the moments
\begin{align}
\Omega^{(0)} &= -\sum_{i < l} \frac{\langle \psi_l | \psi_i \rangle}{\langle \psi_i | \psi_i \rangle} \psi_i, \tag{7a} \\
\Omega^{(1)} &= 0, \tag{7b} \\
\Omega^{(2)} &= -\tau_k C_s^2 \sum_{i < l} \frac{\langle \psi_l | \psi_i \rangle}{\langle \psi_i | \psi_i \rangle} \psi_i, \tag{7c} \\
\Omega^{(n)} &= 0 \text{ for } n > 2. \tag{7d}
\end{align}
Since the structure of the moments of W_l is the same as that of f_l^{eq}, each $\Pi_l^{(0)}$ will be given by
\begin{equation}
\Pi_l^{(0)} = \psi_l - \sum_{i < l} \frac{\langle \psi_l | \psi_i \rangle}{\langle \psi_i | \psi_i \rangle} \psi_i. \tag{8}
\end{equation}
Thus, $\Pi_k^{(0)}$ has no contributions from ψ_l with $l < k$. Since $\psi_l \to \phi_l$ before $\psi_k \to \phi_k$ for $l < k$ it follows that effectively ψ_k has no components along any of the ϕ_l eigenstates and thus the next lowest available eigenstate is the one that is going to be selected by the imaginary time evolution. Notice also that as the different orbitals start converging, the effect of W_l becomes weaker due to the orthonormality of the wave functions and once the different orbitals have converged it plays no further role. In other terms, W_l is only used to drive the different f_l in such a way that they converge to different Kohn-Sham orbitals.

\section{II. Lattice Kinetic Model}

In order to solve Eq.(1) subject to the constraints Eq.(3) and the implicit requirement that the different orbitals need to be orthonormal, a lattice kinetic model for the Kohn-Sham orbitals was developed [9]. First the treatment of Ref.[9] is revised and then our improvement in the source term is presented. Without loss of generality the derivations are shown for a single orbital, and the expressions for many orbitals are introduced afterwards.

\subsection{A. First order LKKS}

The Lattice-Boltzmann equation, which is a special discretization[15] of Eq.(1) for a distribution function $f(x, v, t)$, is given by
\begin{equation}
f_l(x + v_l \delta t, t + \delta t) - f_l(x, t) = -\frac{1}{\tau_k} (f_l(x, t) - f_l^{\text{eq}}(x, t)) + \delta t S_l, \tag{9}
\end{equation}
where δt is the time step and the velocity space has been discretized into a finite number Q of velocity vectors \mathbf{v}_i. The velocity dependence of f, f^{eq} and S has been split into a set of functions f_i, f^{eq}_i and S_i each associated with a corresponding velocity \mathbf{v}_i. The lattice moments of f_i analogous to Eq.(2a) are given by

$$\Pi^{(n)}_{i_1,i_2...i_n} = \sum_i v_{i_1,\alpha_1}v_{i_2,\alpha_2}...v_{i_n,\alpha_n} f_i(x, t), \quad (10)$$

where $v_{i,\alpha}$ denotes the αth component of the i-th velocity vector. Similar expressions hold for f^{eq}_i and S_i.

If the lattice moments satisfy the constraints Eq.(3), it can be shown that the 0-th order moment of the lattice distribution function f_i evolves according to the diffusion equation

$$\frac{\partial \Pi^{(0)}}{\partial t} = \delta t \left(\tau_k - \frac{1}{2} \right) C_s^2 \nabla^2 \Pi^{(0)} + \tilde{S} + O(\delta t), \quad (11)$$

which is equivalent to Eq.(5), up to terms of order $O(\delta t)$, if the identifications $\Pi^{(0)} \equiv \psi$, $\delta t \left(\tau_k - \frac{1}{2} \right) C_s^2 \equiv \frac{\delta t}{2\epsilon}$ and $\tilde{S} \equiv -\frac{\epsilon}{2} \psi$ are made. The extra “$-1/2$” term in the identification of $h/2m$ is due to the spacial discretization.

B. Second order LKKS

By following the standard procedure to obtain Eq.(11) i.e. first Taylor expand the l.h.s of Eq.(9), and then perform a Chapman-Enskog multi scale expansion, it can be shown that the terms of order δt in Eq.(11) arise from the source term in Eq.(9). The same procedure allows to show that if Eq.(9) is extended as

$$f_i(x + \mathbf{v}_i \delta t, t + \delta t) - f_i(x, t) = -\frac{1}{\tau_k} (f_i(x, t) - f^{eq}_i(x, t)) + \delta t S_i + \frac{\delta t^2}{2} D_i S_i, \quad (12)$$

where $D_i = \frac{\partial}{\partial x_i} + \mathbf{v}_i \cdot \nabla$, then the terms of order δt can be eliminated. More specifically the Taylor expansion up to second order of Eq.(12) leads to

$$D_i f_i + \frac{\delta t}{2} D^2 f_i = -\frac{1}{\tau_k \delta t} (f_i - f^{eq}_i) + S_i + \frac{\delta t}{2} D_i S_i, \quad (13)$$

In the multi scale expansion the distribution functions and time derivatives are expanded in a small parameter ϵ (that in fluids dynamics plays the role of a Knudsen number) as follows

$$f = f^{(0)} + \epsilon f^{(1)} + \epsilon^2 f^{(2)} + \cdots, \quad (14)$$

$$\frac{\partial}{\partial t} = \epsilon \frac{\partial}{\partial t_1} + \epsilon^2 \frac{\partial}{\partial t_2} + \cdots, \quad (15)$$

whereas space derivatives and source term are rescaled as $\nabla = \epsilon \nabla_1$ and $S = \epsilon S^{(1)}$ respectively. Replacing Eq.(14) and Eq.(15) into Eq.(13), using Eq.(3a) and collecting terms of equal order in ϵ, we obtain

$$O(\epsilon^0): \quad f^{(0)} = f^{eq}, \quad (16)$$

$$O(\epsilon^1): \quad D_{ii} f^{eq}_i = -\frac{1}{\tau_k \delta t} f_i^{(1)} + S_i^{(1)}, \quad (17)$$

$$O(\epsilon^2): \quad \frac{\partial f^{eq}_i}{\partial t_2} + D_{ii} f_i^{(1)} + \frac{\delta t}{2} D_{ii} S_i^{(1)} = \frac{1}{\tau_k \delta t} f_i^{(2)} + \frac{\delta t}{2} D_{ii} S_i^{(1)}. \quad (18)$$

Eq.(17) is further substituted in the l.h.s of Eq.(18) and the result is summed over all discrete velocities leading to the following relation

$$\frac{\partial \Pi^{(0)}}{\partial t_2} + \left(1 - \frac{\delta t}{2\tau_k}\right) \nabla \cdot \sum_i \mathbf{v}_i f_i^{(1)} = 0. \quad (19)$$

The second term on the l.h.s of Eq.(19) can be evaluated by taking the product of Eq.(17) with \mathbf{v}_i and summing over all velocities, obtaining

$$\frac{\partial \Pi^{(0)}}{\partial t_2} = \left(\tau_k - \frac{1}{2}\right) C_s^2 \nabla^2 \Pi^{(0)}. \quad (20)$$

In a similar manner if Eq.(17) is summed over all velocities the result is

$$\frac{\partial \Pi^{(0)}}{\partial t_1} = \tilde{S}^{(1)}. \quad (21)$$

Eq.(20) can be multiplied by ϵ^2 and added to Eq.(21) multiplied by ϵ. The result is that Eq.(9) together with the moments constraints, Eq.(3), implies that $\Pi^{(0)}$ evolves according to

$$\frac{\partial \Pi^{(0)}}{\partial t} = \left(\tau_k - \frac{1}{2}\right) C_s^2 \nabla^2 \Pi^{(0)} + \tilde{S} + O(\delta t^2). \quad (22)$$

It can be seen that if the correction term $\frac{\delta t^2}{2} D_i S_i$ had not been included in Eq.(12) then the extra term $\frac{\delta t}{2} \frac{\partial \Pi^{(1)}}{\partial t_1}$ would be present in Eq.(19) and then propagated to Eq.(22).

The system of coupled equations for many orbitals is simply given by

$$f_{il}(x + \mathbf{v}_i \delta t, t + \delta t) - f_{il}(x, t) =$$

$$= -\frac{1}{\tau_k} (f_{il}(x, t) - f^{eq}_{il}(x, t)) + \delta t S_{il} + \frac{\delta t^2}{2} D_{ii} S_{il} + \frac{1}{\tau_k} W_{il}, \quad (23)$$

where the index l is associated to the l-th orbital.

At this point, the form of f^{eq}, S, and \mathbf{v}_i remains undefined. To fix these quantities notice that only the moments of f^{eq} and S are required and not the complete analytical form of the functions. This allows to expand both f^{eq} and S in series of the form $f^{eq}(x, \mathbf{v}, t) =$
where \(w(\mathbf{v})F_{eq}(\mathbf{x}, \mathbf{v}, t) \) where \(w(\mathbf{v}) \) is the weight function associated to the family of orthogonal polynomials \(\{P_l\} \) and \(F_{eq}(\mathbf{x}, \mathbf{v}, t) = \sum \alpha_i(\mathbf{x}, t)P_l(\mathbf{v}) \). The coefficients \(\alpha_i(\mathbf{x}, t) \) are easily calculated from the definition of moments and the fact that any combination \(v_{\alpha_1}v_{\alpha_2}...v_{\alpha_n} \) of velocities can be expressed in terms of orthogonal polynomials \(P_l \).

If exact quadrature of the moments \(\Pi_{eq}^{(n)} \) is demanded up to a fixed order \(n \leq N \) we obtain the system of equations

\[
\Pi_{eq}^{(n)} \sum_i w_i v_{i,\alpha_1}v_{i,\alpha_2}...v_{i,\alpha_n} F_{eq}(\mathbf{x}, \mathbf{v}_i, t),
\]

for the weights \(w_i \) and velocities \(\mathbf{v}_i \). The solution of this system is in general non unique, and only solutions for which the velocity vectors form a space-filling lattice and the weights are positive definite should be considered.

Once a suitable solution is found the \(f_{eq} \) functions introduced in Eq.(9) are explicitly given by

\[
f_{eq}^i = w_i \sum_{l=0}^{N-1} \alpha_l(\mathbf{x}, t)P_l(\mathbf{v}_i),
\]

A similar expression holds for \(S_i \). If Hermite tensor polynomials are used, two known lattices that satisfy constraints up to \(N = 4 \) and \(N = 6 \) are respectively \(D3Q19 \) and \(D3Q111 \). In these cases \(f_{eq}^i \) and \(S_i \) are explicitly given by

\[
\begin{align*}
f_i^{(D3Q19)}(\mathbf{x}, t) &= \Pi^0(\mathbf{x}, t)w_i \left(1 + \frac{1}{2C_s^2} (C_s^2 - D)(3C_s^2 - \mathbf{v}_i \cdot \mathbf{v}_i) \right), \\
S_i^{(D3Q19)}(\mathbf{x}, t) &= \tilde{S}(\mathbf{x}, t)w_i \left(1 + \frac{1}{2C_s^4} (C_s^2 - \mathbf{v}_i \cdot \mathbf{v}_i) \right), \\
f_i^{(D3Q111)}(\mathbf{x}, t) &= \Pi^0(\mathbf{x}, t)w_i \left(1 + \frac{1}{2C_s^3} (C_s^2 - D)(3C_s^2 - \mathbf{v}_i \cdot \mathbf{v}_i) + \frac{1}{8C_s^2} (C_s^2 - 2D)(15C_s^4 - 10C_s^2 \mathbf{v}_i \cdot \mathbf{v}_i + (\mathbf{v}_i \cdot \mathbf{v}_i)^2) \right), \\
S_i^{(D3Q111)}(\mathbf{x}, t) &= \tilde{S}w_i \left(1 + \frac{1}{2C_s^4} (C_s^2 - \mathbf{v}_i \cdot \mathbf{v}_i) + \frac{1}{8C_s^2} (C_s^2 - 2D)(15C_s^4 - 10C_s^2 \mathbf{v}_i \cdot \mathbf{v}_i + (\mathbf{v}_i \cdot \mathbf{v}_i)^2) \right),
\end{align*}
\]

where \(D = (\tau_k - \frac{1}{2})C_s^2 = \frac{\hbar}{2m} \) and the value of \(C_s \) depends on the lattice.

C. Semi-implicit correction

From a computational perspective the implementation of Eq.(9) (model 1) requires no special discussion as it conforms to standard Lattice Boltzmann schemes. However, in our approach, (model 2) Eq.(12), there are various ways to implement the correction term \(D_iS_i \). These can be explicit

\[
D_iS_i = \frac{1}{\delta t} \left(S_i(\mathbf{x}, t) - S_i(\mathbf{x} + \mathbf{v}_i \delta t, t + \delta t) \right),
\]

\[
D_iS_i = \frac{1}{\delta t} \left(S_i(\mathbf{x} + \mathbf{v}_i \delta t, t) - S_i(\mathbf{x}, t - \delta t) \right),
\]

or implicit

\[
D_iS_i = \frac{1}{\delta t} \left(S_i(\mathbf{x} + \mathbf{v}_i \delta t, t + \delta t) - S_i(\mathbf{x}, t) \right).
\]

Given that explicit implementations do not require solving a system of equations at every iteration of the algorithm, we performed tests using Eqs.(27a) and (27b), in both cases we found that the procedure was numerically unstable leading to wild oscillations of the measured quantities. To use the implicit form of \(D_iS_i \) and avoid the necessity of solving systems of equations, Eq.(28) was approximated using the formally known imaginary time evolution of the different orbitals. That is, for the \(n \)-th orbital \(D_iS_{i,n} = D_i \frac{\psi_{n}}{\pi} \psi_{n} \), and its discretized version is given by

\[
D_iS_{i,n} = \frac{1}{\delta t} \left(\frac{\psi_{n}(\mathbf{x} + \mathbf{v}_i \delta t, t + \delta t) - \psi_{n}(\mathbf{x}, t)}{\hbar} \right).
\]

An approximation of Eq.(29) can be obtained if \(\psi_{n}(\mathbf{x}, t + \delta t) \) can be estimated. From the imaginary time evolution it is known that

\[
\psi_{n}(\mathbf{x}, t) = \sum_{j \geq n} c_j \phi_j e^{-\frac{\epsilon_j t}{\hbar}},
\]

where \(\phi_j \) and \(\epsilon_j \) are the eigenfunctions and eigenenergies of the Kohn-Sham Hamiltonian and \(c_j \) are the projection coefficients of \(\psi_0 \) in the basis \(\{\phi_j\} \). Therefore, we consider the approximation

\[
\psi_{n}(\mathbf{x}, t + \delta t) \approx \psi_{n}(\mathbf{x}, t) e^{-\frac{\epsilon_j \delta t}{\hbar}}.
\]

Notice that this approximation improves after every iteration and is exact once the steady state has been reached, this follows from the time projection technique that progressively drives all the \(c_j \to 0 \) for \(j \neq n \).
III. RESULTS

A. Model Comparison

Our improved scheme, using the semi-implicit correction term, was used to calculate the exchange and correlation energies of H, He, Be and Ne atoms as well as the bond lengths of H$_2$ and LiH dimers. We compared it with Model 1 using a D3Q19 lattice and the BLYP exchange correlation potential [17, 18]. The physical length of the simulation box is given by $L_p = L \Delta x$ where L is the number of grid points in one direction, Δx is the distance between two successive sites and the resolution of the system is defined as Δx^{-1}.

Results from the He atom and H$_2$ molecule are shown in Fig.1. Both models show that for a fixed resolution Δx^{-1}, as the number of lattice sites i.e the physical size of the simulation box increases, the value of the measured quantities tend to converge to a limiting value, and as the resolution level is improved, the limiting value approaches the expected BLYP values Ref.[19, 20]. These two behaviors are consistent with the fact that as the physical system size and resolution increase, the boundary effects are reduced and the system better approximates an atom or molecule in free space. Furthermore, the limiting values of model 2 are closer to the expected BLYP values than those of model 1 for a fixed Δx, and as the resolution improves both models tend to agree. These observations were consistently verified for all the other studied systems.

The degree to which model 2 is more accurate than model 1 with respect to the expected BLYP values depends on the considered atom or molecule and measured quantity (E_x, E_c, bond length). For example, the insets in the first and second panels of Fig.1 show respectively the relative error, ΔE_x and ΔE_c, of the exchange and correlation energies as a function of Δx^{-1} when the system size is fixed at $L = 150$. In the case of E_x, $\Delta E_x \propto \Delta x^{1.5}$ for the first model and $\Delta E_x \propto \Delta x^{1.6}$ for the second. In contrast the behavior of ΔE_c is non-monotonic. It is worth noting that ΔE_x ranges from 4% to less than 1% whereas ΔE_c is always smaller than 0.3%. Finally the results for simulations of the other systems are summarized in Table I.

B. Ethane molecule

As a test of the proposed model, the C$_2$H$_6$ (ethane) molecule was simulated. The carbon atoms were initially located such that their center of mass was in the center of the simulation box and they were aligned along the z axis. The H atoms were randomly located, three of them closer to the upper carbon atom, and the remaining ones closer to lower carbon atom (Fig 2 left). This set up mimics the common scenario in which there is only partial information available. The final configuration, obtained after 3.6 days of run time on a single core, is shown in Fig 2 (right).

![Fig. 1. Model Comparison: the top and medium panels are respectively the calculated exchange and correlation energies of the He atom as a function of system size for three different resolutions using models 1 and 2. The insets show the relative error as a function of Δx^{-1} for a system size of $L = 150$. The bottom panel shows the equilibrium length of the H$_2$ molecule. The solid blue line is the DFT result using the BLYP functional reported in Ref.[19, 20].](image)
tron density are indicated by red (blue) surfaces along with the electron density, the regions of high (low) electron density are depicted. On the right side the final configuration is shown.

FIG. 2. (Color online). On the left side the initial configuration of the atoms that conform the ethane molecule is depicted. On the right side the final configuration is shown along with the electron density, the regions of high (low) electron density are indicated by red (blue) surfaces.

<table>
<thead>
<tr>
<th>Atom</th>
<th>$-E_x$</th>
<th>$-E_x$ BLYP</th>
<th>$-E_x$</th>
<th>$-E_x$ BLYP</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-0.301</td>
<td>-0.301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>-1.0197</td>
<td>-1.0255</td>
<td>-0.0437</td>
<td>-0.0438</td>
</tr>
<tr>
<td>Be</td>
<td>-2.6741</td>
<td>-2.6578</td>
<td>-0.0965</td>
<td>-0.0945</td>
</tr>
<tr>
<td>Ne</td>
<td>-12.0532</td>
<td>-12.1378</td>
<td>-0.3827</td>
<td>-0.3835</td>
</tr>
</tbody>
</table>

Atom Bond length Bond length (Exp)

H2 1.3867 1.4004 LiH 3.005 3.014

TABLE I. Exchange and correlation energies of different atoms, and bond lengths of different molecules calculated using model 2 with D3Q19 lattice compared to the known BLYP and experimental values.

In order to assess how pseudopotentials couple to our method, tests were performed using the dual-space Gaussian pseudopotentials (DSGPP) introduced in Ref.[25]. The DSGPP were chosen, because they are optimized for the BLYP exchange correlation potential used in this work and because their real space representation is compatible with the real space nature of our method.

The first non trivial example that includes both local and non local contributions of the DSGPP is the BH molecule where the two inner electrons of the boron atom are neglected. In this case the B atom is described by the pseudopotential $V_{pp} = V_{loc} + V_{nonloc}$ where

$$V_{loc}(r) = \frac{-Z_{Ion} e}{|r - R_{B}|} \exp \left(\frac{|r - R_{B}|}{\sqrt{Z_{Ion} e^2}} \right) + \exp \left(\frac{|r - R_{B}|^2}{2 Z_{Ion} e^2} \right)$$

$$\times \left[C_1 + C_2 \frac{|r - R_{B}|^2}{r_{loc}^2} + C_3 \frac{|r - R_{B}|^4}{r_{loc}^4} + C_4 \frac{|r - R_{B}|^6}{r_{loc}^6} \right],$$

and

$$H_{nonloc}(r, r') = \sum_{i=1}^{2} Y_{0,0}(r) p_{i}^0(r) h_{i}^0(r') Y_{0,0}^*(r')$$

$$+ \sum_{m} Y_{1,m}(r) p_{1}^1(r) h_{1}^1(r') Y_{1,m}^*(r').$$

The values of the constants C_i, $i = 1, \ldots, 4$, r_{loc} and h_i as well as the functional form of the projectors $p_{i}^0(r), p_{1}^1(r)$ can be found in Ref.[25]. The DSGPP for boron was implemented and used to calculate the bond length of the BH molecule. It was found that when pseudopotentials are used within our approach the scheme becomes unstable (black dashed line Fig.3). The instabilities were partially controlled by artificially resetting the wave functions and electron density to their initial values after a fixed number of iterations while keeping the current position of the ions (blue dashed-dotted line Fig.3), but eventually instabilities arise. Different initial conditions and resolution levels also suffer from instabilities (green dotted line Fig.3). The reason why our approach becomes unstable may be related to the overall nonlinear nature of the system and the nonlocal component of the pseudopotential that requires the evaluation of projection integrals of the form $\int p_{i}^0(r') Y_{1,m}^*(\hat{r}') \psi(\hat{r}')$, that may not be sufficiently resolved due to the fact that $\psi(\hat{r}')$ is only known at a limited number of lattice points.

C. Pseudopotentials

Pseudopotentials are a way to reduce the computational cost of atomistic simulations that works under the approximation that core electrons are mostly inert[21] and play a minimal role in most of the chemistry. Although pseudopotentials are designed to be highly accurate and transferable, it is not always clear, a priori, how they do couple to different simulation methods. For instance pseudopotentials are known to be problematic or not directly applicable in diffusion Monte Carlo and Green functions approaches [22–24].

In order to assess how pseudopotentials couple to our method, tests were performed using the dual-space Gaussian pseudopotentials (DSGPP) introduced in Ref.[25]. The DSGPP were chosen, because they are optimized for the BLYP exchange correlation potential used in this work and because their real space representation is compatible with the real space nature of our method.

The first non trivial example that includes both local and non local contributions of the DSGPP is the BH molecule where the two inner electrons of the boron atom are neglected. In this case the B atom is described by the pseudopotential $V_{pp} = V_{loc} + V_{nonloc}$ where

$$V_{loc}(r) = \frac{-Z_{Ion} e}{|r - R_{B}|} \exp \left(\frac{|r - R_{B}|}{\sqrt{Z_{Ion} e^2}} \right) + \exp \left(\frac{|r - R_{B}|^2}{2 Z_{Ion} e^2} \right)$$

$$\times \left[C_1 + C_2 \frac{|r - R_{B}|^2}{r_{loc}^2} + C_3 \frac{|r - R_{B}|^4}{r_{loc}^4} + C_4 \frac{|r - R_{B}|^6}{r_{loc}^6} \right],$$

and

$$H_{nonloc}(r, r') = \sum_{i=1}^{2} Y_{0,0}(r) p_{i}^0(r) h_{i}^0(r') Y_{0,0}^*(r')$$

$$+ \sum_{m} Y_{1,m}(r) p_{1}^1(r) h_{1}^1(r') Y_{1,m}^*(r').$$

The values of the constants C_i, $i = 1, \ldots, 4$, r_{loc} and h_i as well as the functional form of the projectors $p_{i}^0(r), p_{1}^1(r)$ can be found in Ref.[25]. The DSGPP for boron was implemented and used to calculate the bond length of the BH molecule. It was found that when pseudopotentials are used within our approach the scheme becomes unstable (black dashed line Fig.3). The instabilities were partially controlled by artificially resetting the wave functions and electron density to their initial values after a fixed number of iterations while keeping the current position of the ions (blue dashed-dotted line Fig.3), but eventually instabilities arise. Different initial conditions and resolution levels also suffer from instabilities (green dotted line Fig.3). The reason why our approach becomes unstable may be related to the overall nonlinear nature of the system and the nonlocal component of the pseudopotential that requires the evaluation of projection integrals of the form $\int p_{i}^0(r') Y_{1,m}^*(\hat{r}') \psi(\hat{r}')$, that may not be sufficiently resolved due to the fact that $\psi(\hat{r}')$ is only known at a limited number of lattice points.

D. Lattice Performance

The performance and accuracy of model 2 using either the D3Q19 or D3Q111 lattice was investigated by simulating the He atom as well as H2 and LiH dimers. The generally observed trend is that for small resolutions the results obtained using both lattices differ, but as the resolution increases the difference is reduced and the results converge.

Although both lattices lead to practically the same results, the D3Q111 lattice allows to chose a higher value for the diffusivity h/m, that can be used to control the convergence rate of the procedure. As an example, the
H$_2$ molecule was simulated using the D3Q111 lattice for three different values of h/m. Fig. 4 (inset). It can be seen that in all cases the system converges to the same value of the bond length, but for $h/m = 1$ the approach is faster than for $h/m = 1/3$ or $h/m = 0.69$. The D3Q111 lattice has almost six times more velocity vectors than D3Q19, and the time of a single iteration using the D3Q111 lattice was measured to be about 1.5 times longer than that of the D3Q19 lattice. After accounting for this, the comparison between the speed of convergence using both lattices for two different system sizes is presented in Fig. 4. It can be observed that the use of the D3Q111 lattice allows for a faster convergence. However, for large resolutions, since both lattices lead to the same accuracy, using D3Q111 presents no advantage in terms of computational time. For instance for the Be atom we found that the D3Q111 lattice with $h/m = 1$ converges equally fast as D3Q19.

IV. CONCLUSIONS

In this work a new and more accurate Lattice Boltzmann scheme to solve the kinetic Kohn-Sham equations has been introduced and validated. The scheme uses a novel way of implementing a semi implicit second order corrections to the forcing term, that makes use of the known asymptotic behavior of the simulated orbitals. This approach avoids the instabilities of the explicit implementations and the computational load of solving implicit systems of equations.

The use of pseudopotentials within our approach requires further work to eliminate the associated instabilities and computational demands, not only for the tested case, but also for general pseudopotentials. Possible approaches in that direction include subgrid refinements.

The results of the ethane molecule simulation show that our method can reproduce the bond lengths of complex molecules, but that further work is required to achieve an overall performance similar to that of established methods such as CPMD, including the full integration with pseudopotentials. It was also confirmed that the D3Q19 and D3Q111 lattices lead to the same results for high enough resolution, giving an advantage to the D3Q19 lattice in terms of computational resources.

For future work, in addition to the aforementioned improvements for pseudopotentials, the performance of our approach will be investigated in crystal systems where its real space periodic boundary conditions naturally fit.

ACKNOWLEDGMENTS

We acknowledge financial support form the European Research Council (ERC) Advanced Grant 319968-FlowCCS. The authors also thank Sauro Succi for useful discussions.