BIOGENESIS AND THE GROWTH OF DNA-LIKE POLYMER CHAINS: A COMPUTER SIMULATION

Hans J. HERRMANN* and Constantino TSALLIS
Centro Brasileiro de Pesquisas Físicas/CNPq, Rua Dr. Xavier Sigaud 150,
22290 Rio de Janeiro, Brazil

Received 8 July 1988

We study, through computer simulation, a crucial step of biogenesis, namely the growth of self-replicating, codified DNA-like polymers starting from a mixture of oligomers. We have adopted the growth scheme that has been recently proposed by Ferreira and Tsallis which incorporates usual ideas of autocatalysis through complementary pairs and within which a central role is played by the hydrogen-like links (characterized by the probabilities p_{AT} and p_{CG} of chemical bonding of the A–T and C–G pairs respectively) between the two chains of the growing polymer. We find that the average equilibrium polymeric length ξ diverges, for any fixed ratio $(1 - p_{AT})/(1 - p_{CG})$, as $\xi \propto 1/(1 - p_{AT})$. Selection of patterns may happen at all stages and in particular at chemical equilibrium. Selection occurs via two different mechanisms: (i) away from the critical point $p_{AT} = p_{CG} = 1$ if $p_{AT} = p_{CG}$; (ii) both on and away from the critical point if the initial concentrations of nucleotides (A, T, C and G or their precursors) are different.

1. Introduction

How did life appear on Earth? This question is so fundamental that it is worthwhile investigating every possible mechanism that can lead to an answer [1–4]. A crucial step of biogenesis is the growth of self-replicating codified DNA-like polymers starting from a mixture of oligomers (monomers, dimers, trimers, etc.) [5–12]. By “DNA-like” we refer to double-chains of nucleotides like adenine (A), thymine (T), cytosine (C) and guanine (G). For the present purposes, the relevant links between the two chains are assumed to respect Crick and Watson-like complementarity [13], i.e., they occur between complementary pairs (A–T and C–G); the bond within each of these pairs is assumed to be a hydrogen-bridge (or a similar linking). Let us right now make

*Permanent address: Service de Physique Théorique, CEN Saclay, F-91191, Gif-sur-Yvette, France.

0378-4371/88/$03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
it clear that, when we use the notation DNA, A, T, C and G, we do not necessarily refer to the well known macromolecule and its nucleotides; the notation might as well refer to their precursors (e.g., if the basic molecule happens to be RNA-like [2, 14–18] rather than DNA, the notation A–T would then refer to the A–U pair).

Various mechanisms (clay [19], protein [20] and aminoacid pairing [21]) have been proposed for the growth of the polymers we are interested in. However, autocatalysis through A–T and C–G pairings occurring in a prebiotic or primordial soup seems the most appealing to us [2, 8, 10–12, 14–18]. Furthermore, its plausibility has recently been experimentally confirmed [22]; we therefore adopt it in the present work. More precisely, we formulate our (computational) approach within the scheme recently introduced by Ferreira and Tsallis [23]. This model contains a certain number of simplifications, the nature of which will become clear in the paper. A list of these simplifications is given in the conclusion. Within this scheme, the prebiotic polymeric growth would have occurred as a critical phenomenon controlled by the A–T and C–G bond fugacities and essentially occurring at thermodynamical quasi-equilibrium. The covalent (or covalent-like) bonds along the chains of the DNA-like molecule are considered quite rigid, and only become chemically active in auto-catalytic complementary configurations (see fig. 1). This growth mechanism being very close to that which is responsible for the replication of DNA double-chains seems biologically very sound. Ferreira and Tsallis have shown that different values for the A–T and C–G fugacities generate, in what concerns the sequences of nucleotides or “codes” of the macromolecules, selection within the diversity, basic condition for life.

The present work is devoted to the computer simulation of such a system, in order to exhibit and better understand its various ingredients. We exactly define our model and algorithm in section 2; the body of the results is presented in section 3.

2. Model and algorithm

We consider two square lattices of size $L_x \times L_y$ (in crystal units), the top lattice and the bottom lattice, each with periodic boundary conditions in both
directions. On the sites of the lattices we place A, T, C and G nucleotides (at most one nucleotide per site). We respectively denote by \(N_A^{\text{tot}}\), \(N_T^{\text{tot}}\), \(N_C^{\text{tot}}\) and \(N_G^{\text{tot}}\) the total number of A, T, C and G nucleotides placed in each lattice (the same quantities are assumed for both lattices). Covalent bondings are possible (to form dimers, trimers, etc.) only within each lattice, and only along the \(x\)-direction. That means that in both lattices all the chains will be parallel to the \(x\)-axis. The hydrogen bridges can appear only between the top and the bottom lattice. That means that if on a given site of the top lattice there is, say, an A nucleotide, and on the same site of the bottom lattice a T nucleotide, then they form a complementary pair and may form a bonding. We denote respectively by \(p_{AT}\) and \(p_{CG}\) the probability of chemical bonding of the A–T and C–G pairs between the two lattices.

The starting configuration is obtained by randomly placing nucleotides in form of monomers and in form of dimers on both lattices (we randomly place first the dimers and then the monomers). We can place, on each lattice, \(N_A\) A-monomers, \(N_T\) T-monomers, \(N_C\) C-monomers, \(N_G\) G-monomers, \(N_{AA}\) AA-dimers, \(N_{AT}\) AT-dimers, etc. The following relations are obviously satisfied:

\[
\begin{align*}
N_A^{\text{tot}} &= N_A + 2N_{AA} + N_{AT} + N_{AC} + N_{AG}, \\
N_T^{\text{tot}} &= N_T + N_{AT} + 2N_{TT} + N_{TC} + N_{TG}, \\
N_C^{\text{tot}} &= N_C + N_{AC} + N_{TC} + 2N_{CC} + N_{CG}, \\
N_G^{\text{tot}} &= N_G + N_{AG} + N_{TC} + N_{TG} + 2N_{GG},
\end{align*}
\]

and

\[
N_A^{\text{tot}} + N_T^{\text{tot}} + N_C^{\text{tot}} + N_G^{\text{tot}} \leq L_x L_y.
\]

We shall work with \(N_A^{\text{tot}} = N_T^{\text{tot}}\) and \(N_C^{\text{tot}} = N_G^{\text{tot}}\); the ratio \(N_A^{\text{tot}}/N_C^{\text{tot}}\) will be used as a parameter of the model but we usually consider it to be unity. Also we shall assume that the AA, AT, TA and TT dimers appear equally often, i.e., \(N_{AA} = N_{TT} = N_{AT}/2\); analogously \(N_{CC} = N_{GG} = N_{CG}/2\). Finally, we assume \(N_{AC} = N_{TC} = N_{AG} = N_{TG}\). Summarizing, we control the concentrations corresponding to each initial configuration by fixing 5 parameters, namely \(N_A^{\text{tot}}, N_C^{\text{tot}}, N_{AA}, N_{CC}\) and \(N_{AC}\).

After the starting configuration is set, the computer simulates its time evolution. The main processes occur: diffusion and growth. Diffusion is simulated in the following way. We randomly choose a chain (or monomer) of the top lattice. We then check whether we can move it one step along the
positive x-direction (the first-neighbouring site along the $+x$ end of the chain must be empty): if we can we do; if we cannot, we abandon it. We then randomly choose another chain of the top lattice and check whether we can move it one step along the positive y-direction (all first-neighbouring sites on the $+y$ side of the chain must be empty): if we can we do; if we cannot, we abandon it. We repeat the operation along the negative x-direction, and finally along the negative y-direction. Under these conditions a shift in y-direction is less likely to occur than in x-direction since it is less probable that all the sites along the side of the chain are empty than that only the site at the end of the chain is empty. To better control this anisotropy in the diffusion, which essentially seems physical to us, we have generalized the above procedure in the sense that we choose the x-direction m_x times and the y-direction m_y times, and allow for $m_x/m_y \neq 1$. We found, however, that our final result did not depend on m_x/m_y. The procedure used for the bottom lattice is exactly the same. So we define one diffusion step by m_x (and m_y) attempts of diffusion in the positive x (and y)-direction and m_x (and m_y) attempts in the negative x (and y)-direction and this for each of the two lattices. For most of our data we have chosen $m_x = m_y = 1$.

The second essential process is growth. Since we want to reach thermal equilibrium our growth mechanism must fulfill detailed balance. The autocatalytic growth (and breaking) process we shall consider is the following one:

\[
P_{\text{left}} \quad \text{or} \quad P_{\text{left}} \quad \xrightarrow{k_1} \quad P_{\text{right}} \quad \xrightarrow{k_2} \quad P_{\text{left}} \quad \cdots \quad P_{\text{left}} \quad P_{\text{right}},
\]

where both P_{left} and P_{right} can take the values P_{AT} and P_{CG}, and where the transition rates k_1 and k_2 must satisfy

\[
\frac{k_1}{k_2} = \frac{2P_{\text{left}}P_{\text{right}}}{P_{\text{left}}(1-P_{\text{right}}) + P_{\text{right}}(1-P_{\text{left}}) + (1-P_{\text{left}})(1-P_{\text{right}})}
\]

\[
= \frac{2P_{\text{left}}P_{\text{right}}}{1-P_{\text{left}}P_{\text{right}}},
\]

where we have assumed independence between the "left" and "right" hydrogen-like bonds linking complementary nucleotides. At the left-hand side of eq. (3) we have three chains of lengths l_1, l_2 and l_3 respectively; at the right-hand side we have two chains, whose lengths respectively are $l_1 + l_2$ and l_3, the third chain having acted as a catalyst for the (covalent) junction of the other two. A growth step is defined in the following way: Randomly any site is chosen for which a complementary pair is present on the two lattices. If the
neighbouring site (conventionally in negative x-direction) does not have a complementary pair too, the growth attempt is abandoned. Otherwise there are three possibilities: (1) between the two sites there is no covalent bond in either of the lattices, (2) there is a covalent bond in only one of the lattices, and (3) there are covalent bonds in both lattices. In the first case the growth step is abandoned. In the second case the open bond will be closed by a covalent bond with probability \(p_{\text{left}}p_{\text{right}} \), i.e., with probability \(p_{\text{AT}}^2 \), \(p_{\text{AT}}p_{\text{CG}} \) or \(p_{\text{CG}}^2 \) depending if the two complementary pairs were both of the type A–T, one of type A–T and one of type C–G, or both of type C–G. Finally, in the third case, one of the two (randomly chosen) covalent bonds will be destroyed with probability \((1 - p_{\text{left}}p_{\text{right}})/2 \), i.e. \((1 - p_{\text{AT}}^2)/2\), \((1 - p_{\text{AT}}p_{\text{CG}})/2\) or \((1 - p_{\text{CG}}^2)/2\) depending on if the complementary pairs were both of type A–T, one of type A–T and one of type C–G, or both of type C–G. Through this rule a thermodynamical equilibrium is well defined since a detailed balance condition is fulfilled. The variables \(p_{\text{AT}} \) and \(p_{\text{CG}} \) determine the “willingness” of a complementary pair to contribute to the creation of a covalent bond. Since the probability of having two neighbouring complementary pairs is low, only a small fraction of growth steps is successful, typically only about every hundredth for the parameters that we are going to use.

In the time development, both processes, diffusion and growth, must be mixed. So we define one evolution step as consisting of first \(m_d \) diffusion steps and then \(m_g \) growth steps. In most cases we have chosen \(m_d = m_g = 10 \). After the application of some evolution steps, a certain amount of the originally placed monomers and dimers has grown into longer chains (trimers, tetramers, . . ., polymers). In fig. 2 we show a typical configuration at two different times (since the chains are aligned in the x-direction we have chosen \(L_x \) larger than \(L_y \)). Finally, if enough time steps have been applied the chain-length distribution \(n_l \) will come into some equilibrium, where \(n_l \) is defined as the number of chains of length \(l \). In fig. 3 we show a typical equilibrium distribution of chain lengths. This distribution decreases monotonically like the cluster-size distribution of percolation and opposed to what is found in many irreversible cluster aggregation models [24, 25]. We monitored two quantities that are related to \(n_l \):

the mean chain length

\[
\xi = \langle l \rangle = \sum_{l=1}^{\infty} \langle ln_l \rangle / \sum_{l=1}^{\infty} n_l
\]

and its fluctuation

\[
\Delta = [(\langle l^2 \rangle - \langle l \rangle^2)]^{1/2} = \left[\sum_{l=1}^{\infty} \langle l^2n_l \rangle / \sum_{l=1}^{\infty} n_l - \langle l \rangle^2 \right]^{1/2}.
\]
In order to control statistical fluctuations we used the following procedure: first m_{eq} evolution steps were discarded to assure that the system be in equilibrium. Then each m_s evolution steps we extract the data from our system and at the end we take the average value over all these data. m_s is usually chosen to be 200. In addition we also average over several starting configurations, but it turns out from our data that this second averaging is not really necessary; it seems that our system is ergodic. In addition to ξ and Δ we also monitor the length l_{max} of the longest chain found at a given evolution step.

One of our central aims is to see if some selection of patterns (or codes) naturally occurs in our model under an appropriate choice of parameters. It is not easy to quantify selection. In addition, useful quantities like the entropy [26] are very hard to obtain accurately via numerical simulations. We have opted, therefore, for a very simplified approach: We look how often a certain type of covalent bond appears. So we calculate the fraction $f_{A,T}$ of covalent
bonds that are of type (A, T), i.e., A–A, A–T, T–A or T–T; the fraction \(f_{c,g} \) of covalent bonds that are of type (C, G), i.e., C–C, C–G, G–C or G–G; and

the fraction \(f_{a,c} \) of covalent bonds that are of type (A, C), i.e. A–C, C–A, A–G, G–A, T–C, C–T, T–G or G–T. The fraction is taken with respect to all covalent bonds on both lattices. At the initial time of any configuration we have

\[
\begin{align*}
 f_{a,t} &= \frac{N_{AA} + N_{AT} + N_{TT}}{N_{AA} + N_{AT} + N_{TT} + N_{CC} + N_{CG} + N_{GG} + N_{AC} + N_{AG} + N_{TC} + N_{TG}}, \\
 f_{c,g} &= \frac{N_{CC} + N_{CG} + N_{GG}}{N_{AA} + N_{AT} + N_{TT} + N_{CC} + N_{CG} + N_{GG} + N_{AC} + N_{AG} + N_{TC} + N_{TG}}, \\
 f_{a,c} &= \frac{N_{AC} + N_{AG} + N_{TC} + N_{TG}}{N_{AA} + N_{AT} + N_{TT} + N_{CC} + N_{CG} + N_{GG} + N_{AC} + N_{AG} + N_{TC} + N_{TG}}.
\end{align*}
\]

At any time \(f_{a,t} + f_{c,g} + f_{a,c} = 1 \).

In addition to fractions \(f_{a,t}, f_{c,g} \) and \(f_{a,c} \), we also monitor the distribution of these three types of covalent bonds according to the chain lengths, i.e., we determine \(n_{i}^{A,T}, n_{i}^{C,G} \) and \(n_{i}^{A,C} \) which tell how many covalent bonds of type (A, T), (C, G) and (A, C) there are in a chain of length \(l \). Through a convenient normalization, we may impose \(n_{i}^{A,T} + n_{i}^{C,G} + n_{i}^{A,C} = 1 \). To illustrate the effect of selection we show, in fig. 4, \(n_{i}^{A,T} \) and \(n_{i}^{C,G} \) obtained for a specific choice of
parameters. Clearly, the two quantities behave differently; \(n^{\Lambda,T}_l \) has larger values and fluctuates more for intermediate chain lengths \(5 < l < 20 \). This disparity between covalent bonds of type \((A, T)\) and type \((C, G)\) is for us evidence that not all patterns appear equally often but that some of them have been selected to appear preferentially.

3. Results

How long and how large do we need to simulate in order to get reasonable results? Let us start by looking at a couple of histograms: the development of \(\xi \) in time as shown in fig. 5 for both isotropic \((m_x = m_y = 1)\) and anisotropic \((m_x = 1, m_y = 9)\) diffusion. At about 20,000 evolution steps this \(160 \times 10 \) system seems to come so close to equilibrium that the statistical fluctuations seem to be of the same order of magnitude of the systematic deviation from equilibrium, so \(m_{eq} = 20,000 \) is reasonable. Furthermore, we see in fig. 5 that the fluctuations in \(\xi \) increase with increasing \(\xi \) which comes from the fact that the change in length of a chain at one breaking is proportional to the length itself. Another interesting effect is that, instead of the most common exponential approach to equilibrium, we have here a nearly linear increase. Specifically, at very early times the slope is smaller than at later times. This uncommon behaviour presumably comes, among others, from the fact that the monomers...
must enter into a chain before they can be active as a complementary pair to a growth process. Comparison between figs. 5a and b exhibits the statistical irrelevance of anisotropy in the diffusion steps. The time needed to perform a simulation such as those presented in fig. 5 is about 10 minutes on an IBM 360/158.

To estimate the system size needed for a given choice of parameters it is good to see how long the longest chain was that ever appeared during a given
simulation. For the simulation of fig. 5a for instance, it was 67, so that \(L_x = 160 \) seems enough.

An important result concerns the existence of critical points, namely a choice of parameters at which the equilibrium characteristic length \(\xi \) of the chain diverges. Such a point is of deep interest in Biogenesis since, if the Ferreira and Tsallis picture for this prebiotic stage is correct, only approaching such a critical point one can generate arbitrarily long DNA chains. The most relevant parameters of our model are \(p_{AT} \) and \(p_{CG} \) since they contain in some way the external variables of the physical situation like temperature, pressure, humidity, various salt concentrations, light intensity, etc. We will therefore explore first the \((p_{AT}, p_{CG})\) plane. In fig. 6 we see how the equilibrium value of \(\xi \) changes along three different paths in the \((p_{AT}, p_{CG})\) plane. Clearly \(\xi \) seems to diverge only at \(p_{AT} = p_{CG} = 1 \) which is therefore the only critical point of our problem. This is a consequence of the one-dimensional nature of our growth model. We can speculate that, if our polymer model had an effective topological dimensionality higher than one (due, for instance, to cross-links in a folded double-chain), we would have critical lines in the \((p_{AT}, p_{CG})\) plane (like those appearing in refs. [23]) instead of a unique critical point \(p_{AT} = p_{CG} = 1 \). But coming back to our one-dimensional model, if one approaches \((p_{AT}, p_{CG}) = (1, 0.9)\), for instance, the value of \(\xi \) appears to converge towards a finite value.

The divergence of \(\xi \) at the critical point is consistent with a power law,

\[
\xi \propto (1 - p_{AT})^{-x},
\]

(6)

\[\text{Fig. 6. Log–log plot of } \xi \text{ against } 1 - p_{AT} \text{ at the equilibrium along three different paths in the } (p_{AT}, p_{CG}) \text{ plane: } p_{CG} = p_{AT} (\times); 1 - p_{CG} = 4(1 - p_{AT}) (\bigcirc) \text{ and } p_{CG} = 0.9 (\blacktriangleup). \text{ In the insert we show these three paths in the } (p_{AT}, p_{CG}) \text{ plane itself. For all runs the starting configuration has been chosen completely symmetric, i.e., } N_{\Lambda}^{tot} = N_{\Lambda}^{ext} \text{ and } N_{\Lambda \Lambda} = N_{CC} = N_{\Lambda \Lambda}/2, \text{ and } N_{\Lambda}^{int} = 0.26 L_x L_y.\]
because the points in fig. 6 lie quite well on straight lines. The exponent x does not depend on the path used to approach the critical point. We find $x = 0.49 \pm 0.05$, which suggests that eq. (6) could well be a square-root behaviour: $x = 1/2$. The proportionality constant of eq. (4) does, however, change if the path in the (p_{AT}, p_{CG}) plane is changed. A formula that fits reasonably well all of our data is

$$
\xi = \frac{A}{[(1 - p_{AT})^2 + (1 - p_{CG})^2]^{1/4}},
$$

(7)

where A is of order unity.

The average longest chain l_{max} and the fluctuations Δ of the chain length also diverge with a power law like that of eq. (6) with the same exponent x within the statistical error bars. This is seen in fig. 7 for one of the paths of fig. 6 that approaches the critical point.

Let us now come back to selection and consider the ratio $r = f_{A,T}/f_{C,G}$. If one approaches the critical point along the line $p_{AT} = p_{CG}$, one always has $r = 1$ within the statistical fluctuations. On the other hand we show, in fig. 8, what happens if one approaches the critical point along the line $1 - p_{CG} = 4(1 - p_{AT})$. We see that $r > 1$ on the whole line, except possibly at the critical point itself. Approaching the critical point $r - 1$ vanishes (i.e., $f_{A,T} - f_{C,G}$ tends to vanish) in a way that seems to be described by a power law since the data in the log–log plot of fig. 8 lie more or less on a straight line. We conclude from this that for all values $p_{AT} \neq p_{CG}$ there will be some selection in equilibrium; but since for the critical point itself p_{AT} equals p_{CG}, we cannot get selection for infinitely long chains in the present conditions (namely, $N_{A}^{\text{tot}} = N_{C}^{\text{tot}}$ and

![Fig. 7. Log–log plot of Δ (●) and l_{max} (△) against $1 - p_{AT}$ along the path $1 - p_{CG} = 4(1 - p_{AT})$ and the same starting conditions as in fig. 6.](image-url)
Fig. 8. Log–log plot of $r - 1$ against $1 - p_{AT}$ along the same path and starting conditions of fig. 7. For two values of p_{AT} we have represented two different statistical samples to exhibit the magnitude of the fluctuations.

$N_{AA} = N_{CC} = N_{AC}/2)$. Thus a possible scenario for selection in biogenesis could have been that nature approached the critical point along a line $p_{AT} \neq p_{CG}$ so that $f_{A,T} \neq f_{C,G}$, and that before the critical point was reached the system started, for some reason, to defy thermal equilibrium by undergoing various non-equilibrium processes which would ultimately lead to a partial isolation of the system from the exterior by means of membranes. In any event it is very unlikely that nature ever reached the critical point also because infinitely long chains do not exist.

Another selection mechanism can be related to asymmetries in the starting configuration, i.e., if we do not demand any more $N_{A}^{tot} = N_{C}^{tot}$ and $N_{AA} = N_{CC} = N_{AC}/2$. It is of course probable that the prebiotic soup was not that symmetric and for that reason we also investigated other starting configurations. First we looked at the case where $N_{A}^{tot} = N_{C}^{tot}$ but the dimers have different concentrations; so we chose $N_{AA} = 18$, $N_{CC} = 2$ and $N_{AC} = 12$ for $p_{AT} = p_{CG}$ in an 80×10 system. We found that the equilibrium times were somewhat longer than in the symmetric case but, except for that, all equilibrium properties were essentially identical. So we conclude that disparities in the original concentrations of dimers do disappear in the course of equilibration. One should, however, remark that all types of dimers must be represented at the beginning by at least one sample because otherwise, due to our
complementarity mechanism, this particular type of covalent bond will never be created during the growth.

The other, more radical, asymmetry that can be introduced in the starting configuration is \(N_{A}^{\text{tot}} \neq N_{C}^{\text{tot}} \). Specifically we looked at \(N_{A}^{\text{tot}} = 272 \), \(N_{C}^{\text{tot}} = 144 \), \(N_{AA} = 18 \), \(N_{CC} = 2 \) and \(N_{AC} = 12 \) at \(p_{AT} = p_{CG} \) in an \(80 \times 10 \) system. We found, while approaching the critical point, \(r = 5 \pm 1 \), i.e., a very strong preference for covalent bonds of type (A, T). This is therefore another possible selection mechanism which works even for \(p_{AT} = p_{CG} \) and which subsists even at the critical point. The appearance of this type of selection is very easy to understand: since the total number of A and T nucleotides is larger than the total number of C and G nucleotides, it is more likely to find covalent bonds of the type (A, T) than covalent bonds of the type (C, G) in the patterns.

4. Conclusion

Following along the lines of the Ferreira and Tsallis scheme for the growth of self-replicating codified DNA-like polymers in a prebiotic soup, we have simulated the phenomenon by a computer trying to make the model as realistic as possible without complicating it beyond our computational capacities. So we introduced: (i) straight DNA-like chains that are aligned along a unique direction and that perform a two-dimensional diffusion (instead of possibly very folded chains that can quite freely rotate and that perform a three-dimensional diffusion); (ii) discrete (instead of continuous) time and space; (iii) sequential diffusion and growth processes (whereas it seems more realistic that they have quite frequently occurred simultaneously); (iv) bi-planar configuration for autocatalysis (whereas it seems more realistic to occur in all directions); (v) fugacity-variables only for the A–T and C–G hydrogen-like bondings, the fugacities of the 10 possible first-neighbour covalent bonds being held infinitely strong (which clearly is but a first approximation); (vi) an autocatalytic growth (and breaking) process which takes into account the possible presence of complementarity links only on the two nucleotides involved in the first-neighbour covalent bond (in fact it is not obvious that nucleotides others than those do not play an appreciable role); (vii) independent occurrence of the two first-neighbouring hydrogen-like bondings responsible for the autocatalysis of a covalent bond (whereas some correlation cannot be excluded). In spite of these many simplifying assumptions, it seems a priori quite plausible (and the results reinforce a posteriori this belief) that the main ingredients have been retained in our model. In particular, the fact that we have allowed, together with the growth process, its reverse (breaking) process
enables the system to achieve thermodynamic equilibrium, for each choice of
d parameters.

Our main results have been that only for $p_{AT} = p_{CG} = 1$ our chains grow
infinitely long, and the equilibrium average chain length, its fluctuation as well
as the longest chain length diverge at this point like $1/\sqrt{1 - p_{AT}}$. Selection, i.e.
preference of some patterns over others, can occur if $p_{AT} \neq p_{CG}$ or if in the
starting configuration the total number of the different species of nucleotides is
chosen differently. The whole picture suggests, for the particular stage of
biogenesis under discussion, that the main ingredients of a Darwinian-like
molecular evolution, namely diversity and selection, can be naturally incorpo-
rated in a scheme of thermodynamical quasi-equilibrium. The phenomenon
essentially looks like a critical one, the most relevant external parameters being
the fugacities of the hydrogen-like bridges between the nucleotides of com-
plementary pairs.

Certainly our work is not exhaustive. A detailed investigation of the
influence of the starting configurations would be welcome. A better under-
standing of the peculiar increase of the chain length at early times, as well as of
our square-root laws and eq. (7) is also needed. Finally, it would be interesting
to include some more realistic features into our model.

Acknowledgements

Fruitful discussions with R. Ferreira and A.O. Caride at the early stages of
this work are gratefully acknowledged. One of us (H.J.H.) has benefited from
a Guggenheim Fellowship.

References

1974).
1977).

